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ABSTRACT 
Air pollution can be very harmful to human health, especially in urban areas of large cities and in the vicinity of 

chemical industries. In order to prevent and minimize environmental impacts from these industries, it is 

necessary to use mathematical models, which can simulate scenarios associated with dispersion of pollutants. 

This work presents a new analytical method for solving pollutant dispersion problems. The method uses two 

first-order differential restrictions from which are found auto-Bäcklund transformations for the two-dimensional 

advection-diffusion equation at steady state. The main characteristic of the formulation is the reduced time 

required to obtain analytical solutions. 

Keywords-Dispersion of pollutants, Exact solutions, Mathematical modeling, Project to prevent contingencies

I. INTRODUCTION 
In order to estimate the environmental 

impacts caused by the emission of gaseous effluents 

from a chemical industry, it is necessary to simulate 

several alternatives associated with the level and type 

of effluent treatment to be implemented in the 

production process. This evaluation must be done by 

simulating the situations corresponding to these 

alternatives, so as to minimize the environmental 

impact without ignoring the costs related to each one. 

The minimization of environmental impacts aims to 

limit the concentration of the pollutants released 

within values set by the environmental legislation.  

The simulations are performed from mathematical 

modeling that provide through maps or tables, the 

distribution of the concentrations for the substances 

of interest over the space surrounding the discharge 

point. The models represent boundary value problems 

based on the advection-diffusion equation, which 

governs the dispersion of atmospheric pollutants. The 

demand for the simulation of several situations to 

select the best alternative makes necessary to use 

methods of resolution possessing the following 

characteristics: 

-  reduced processing time 

-  possibility to simulate discharges in sub domains 

with variable spatial resolution  

-  flexibility in relation to the region topography 

and conditions of contour to be prescribed. 

The choice of the best alternative for 

treating gaseous effluents from an industrial unit 

potentially polluter of the atmosphere, which 

minimizes the environmental impact and meets the 

current environmental legislation, by the selection of 

several possibilities of treatment, requires the use of a 

typically steady model, once it is sought the 

simulation of situations at steady state.  

Another important application in 

environmental engineering concerns the accidental 

release of gaseous effluents, as consequence of 

serious accidents during the production process. In 

this situation, an instantaneous dump leads to a 

typically transient problem, whose resolution should 

be obtained with methods that allow evaluating 

spatial and temporal distribution of toxic pollutants. 

In this case, the reduced processing time, more than a 

desired characteristic, is a criterion of viability, 

because the decision aiming the adoption of measures 

to minimize environmental impact should be 

performed timely. These measures, such as warnings 

to the population, or the immediate evacuation of 

residences and industrial or commercial installations, 

are based on situations that reflect the progress of the 

pollution cloud.  

However most methods employed in the 

resolution of problems of atmospheric pollution uses 

the Gaussian plume model. This model considers that 

when pollutants are released by an emitting source 
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are carried away by the wind – whose speed is 

considered constant and uniform –which determines 

the main direction of the gaseous flow trajectory in 

the atmosphere [1, 2].   

In this model some significant hypotheses are 

considered which considerably detail the space of 

solutions of the advection-diffusion equation in its 

original form: 

i. The components of the velocity vector are 

considered constant and uniform, i.e., they do 

not vary in space and time. 

ii. The diffusive model is considered linear, 

disregarding an important effect of anomalous 

diffusion. 

iii. The environment is considered infinite, so that, 

at first, only conditions of contour of second 

species can be applied near the ground.  

In the proposed study is presented a model 

of pollutant propagation which constitutes a factored 

form of the advection-diffusion equation, composed 

of two first-order partial differential equations. This 

model enables to consider not only the non-linearity 

comes from the dependence of the diffusivity 

coefficient on the concentration, but also all the 

possible anisotropic terms eventually considered 

when performing successive integrations over the 

master equation. 

 

II. THEORETICAL BACKGROUND 
The main advantage of employing this 

factored form is because no future implementations 

or alteration are needed in the corresponding 

resolution method, in opposition to what occurs with 

the original forms of second order advection-

diffusion equation. This implies directly in four 

advantages from the operational point of view: 

i. the generation of a very compact source code, 

whose depuration steps become relatively 

simple.  

ii. the high performance of the resolution method 

based on symbolic processing. 

iii. the analytical character of the solution eases the 

physical interpretation of the phenomena in the 

simulated conditions and allows performing 

several sensitivity tests in relation to 

thermodynamic variables, such as temperature 

and pressure, without involving great 

computational effort.  

iv. once the temperature and pressure can explicitly 

appear on the solution, at first there is no need to 

split the domain into regions characteristics of 

the boundary atmospheric layer. 

The air quality determined from its 

monitoring and performed through periodical 

measurements of some parameters at certain sites of 

the area of interest can be useful in evaluating the 

level of atmospheric pollution. However, these 

measurements allow a static and fragmented view of 

the phenomenon of atmospheric pollutant dispersion.  

As a result of the cost involved in the collection, 

environmental data is scarce and usually consists of 

time series measured at a critical region, such as the 

central area of some cities. However to evaluate the 

dispersion of gaseous pollutants in a larger area, the 

cost increases significantly, preventing the 

achievement of a spatial and temporal mesh with 

satisfactory resolution to assess the dynamics of 

pollutant dispersion. Thus, a combined perspective, 

spatial and temporal, of the pollutant dispersion 

should be made using a model that enables, from the 

simulation of the dispersion dynamics, the spatial and 

temporal interpolation. 

Models are indispensable tools for studying 

a system, because allow to integrate spatially 

dispersed formations, to interpolate information for 

regions in which there are no measurements, to assist 

the interpretation of measurements made in punctual 

stations, to provide understanding for the dynamics 

and to predict situations simulating future scenarios. 

In the evaluation of the air quality, the system 

consists in the region of interest, delimited by its 

contour, and the possibly existing pollution sources.  

Mathematical models are used to represent the flow 

and dispersion of gaseous pollutants in a region, 

based on principles of conservation expressed in 

terms of differential equations and appropriate 

conditions of contour. 

Other possibility is that representing the 

phenomenon of interest using a physical model, 

which generally consists in reproducing, on a reduced 

scale, the system object of study. Although used until 

the mid-1970s, with the marked increase in the 

processing power and storage capacity of computers 

physical models were gradually replaced by 

mathematical models. These are composed of 

differential equations which govern the phenomena 

of interest, subject to conditions of contour and an 

initial condition. The solution is obtained with the 

employment of numerical methods and, in some 

more recent cases, analytical methods.  

In the evaluation of air quality, in a region of 

interest, in which can be estimated a field of speeds 

corresponding to the wind regime in this region, it is 

employed the advection-diffusion equation to 

evaluate the atmospheric dispersion of gaseous 

pollutants. The resolution of this equation, whose 

formulation involves diffusion associated with 

concentration gradient of the environment, and the 

advection, associated with the transport caused by 

winds, provides a function that translates the spatial 

and temporal distribution for the concentration of 

gaseous pollutants in the region of interest. 

The advection-diffusion equation can be 

solved with the use of numerical, analytical and 
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hybrid methods [3], but still there are no analytical 

solutions known for various problems of great 

interest in environmental engineering. 

The main numerical methods used to solve the 

advection-diffusion equation are: finite differences, 

finite elements, finite volumes and spectral methods. 

It is presented a summarized description for the 

characteristics of these methods, focused on their 

advantages and limitations for the application in 

solving the problem proposed. 

The method of finite differences presents the 

inconvenience to require a great computational effort 

in the treatment of transient multidimensional 

problems. This is due to the need of discretization 

into fine mesh in interfaces or regions where 

presumably occur large gradients of concentration, 

temperature or pressure. The use of meshes with 

variable density [4] or the employment of curvilinear 

coordinates which adapt to the geometry of the 

contour [5,6,7] are resources used to reduce the 

processing time of these methods. 

The use of formulations in finite elements is 

versatile to represent complex geometries, once 

possesses automatic generators of triangular and 

hexagonal meshes, it allows the variation in size of 

the elements composing the mesh and the conditions 

of contour can be easily implemented [8,9,10]. 

However, for the two-dimensional problems there are 

the productions of algebraic systems of order 

excessively high.  

In order to combine the versatility of 

numerical methods and the computational 

performance of analytical formulations, it can be 

used exact solutions valid in very extensive sub 

domains. These solutions contain a sufficient number 

of arbitrary constants to preserve the spatial 

resolution for the respective maps of concentration 

and speed, without producing source codes whose 

processing time becomes excessively high. This 

occurs because the algebraic systems resulting from 

the imposition of the solution continuity in the 

interfaces among sub domains and from the 

application of the conditions of contour possess 

relatively low order and, eventually, can also possess 

high uncoupling degree. 

These solutions are obtained through hybrid 

formulations that, in opposition to the traditional 

methods of analytical solution, seek for particular 

solutions instead of general ones. These solutions 

would be very restrictive to describe a large number 

of scenarios, but proved to be very easy and quick to 

apply when using symbolic computing programs. 

Such programs, developed over recent decades, 

enabled the use of analytical tools in problems, which 

would be computationally expensive when processed 

by conventional numerical methods [11]. These 

analytical tools, extremely useful to solve nonlinear 

partial differential equations, come from methods 

emerged in the late nineteenth century, based on the 

application of symmetries and mappings [12, 13, 14], 

as well as switching relationships [15, 16, 17, 18]. 

Thus, it became possible the application of 

this class of methods in real cases, so-called of 

engineering, as a result of the fact that some 

particular solutions for the advection-diffusion 

equation have the capacity to describe the flow in 

regions much larger than the usual scale for the 

elements of a numerical mesh. We can thus see them 

as particular models of sub mesh in a space 

discretization, which could be considered very rough 

to any other method. The widest solution, although 

never general, of the flow requires the resolution of a 

system of equations that imposes the solution 

continuity and of its derivatives in the interfaces of 

the many space sub domains described by each local 

analytical solution. 

The achievement of particular solutions for 

sub domains applies perfectly to cases where the 

equations that describe the physical problem do not 

allow the easy achievement of a solution 

comprehensive enough for the entire domain, or even 

when their achievement means a very great 

computational effort when compared with the 

required for problems in fine mesh. There are, 

however, partial differential equations whose 

factored forms, obtained through reduction of order, 

produce solutions containing not only arbitrary 

constants, but also arbitrary functions of one or more 

variables [19,20]. These solutions are especially 

advantageous from the computational point of view, 

because possess, in general, very compact 

expressions. Such expressions facilitate the 

application of conditions of contour and transit 

through points – which establish the solution 

continuity in the interfaces – due to the fact that they 

do not produce a system of high order algebraic 

equations, as occurs when arbitrary elements are 

constants. 

 

METHODOLOGY AND RESULTS OBTAINED 

The transport and dispersion of pollutants in 

the atmosphere are provided by the advection-

diffusion equation, as follows: 

u.
∂C

∂x
+ v.

∂C

∂y
= D.  

∂2C

∂x2
+

∂2C

∂xy2
   (1) 

where C(x,y) is the function that represents the 

concentration of the desired pollutant, D is the 

diffusion coefficient of the pollutant in the 

atmosphere, u and v are the components for the speed 

vector in the directions x and y, respectively. The 

figure below illustrates the orientation of the system 

of axes used in the proposed formulation: 
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Fig. 1 system of axes used in the formulation of the 

proposed model 

 

This equation can thus be factored into: 

y

a

x

C
DCu









 ..

   (2) 

and 

x

a

y

C
DCv









 ..

   (3) 

where a(x,y) is an arbitrary function. 

The application of the divergent operator on 

the system represented by the equations (2) and (3), 

i.e., the sum of the expressions resulting from the 

partial derivation of these equations, in relation to x 

and y, respectively, results in: 

2 2

2 2
.

C C u v C C
u v C D v

x y x y x y

       
      

        
     (4) 

which consists of the advection-diffusion equation 

plus the term represented by the product of the 

concentration by the velocity divergent, in which it is 

annulled for the incompressible flow, which 

constitutes a reasonable approximation for the flows 

whose order of the velocity module is much lower 

than the speed sound in air. 

The system resolution requires the 

verification for the compatibility condition, which is 

made by imposing the equality of the concentration 

cross-derivatives, which is obtained by the partial 

derivation of (2) and (3) in relation to y and x, 

respectively: 

 

2

22

...
y

a

y

C
u

y

u
C

yx

C
D



















 (5) 

and 

 

2
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x
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


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












 (6). 

By equaling equations (5) and (6), it is obtained: 
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The expressions for the partial derivatives of 

C, in relation to x and y, obtained from the equations 

(2) and (3), are respectively: 

D

y

a
Cu

x

C




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
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



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.

   (8) 

and 

D

x

a
Cv

y

C


















.

   (9). 

 

Finally, by introducing the expressions 

obtained for the partial derivatives of C(x,y) in the 

equation (7), it is obtained: 
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(10).

 In this equation, the term inserted into the 

bracket that multiplies the concentration (C) is the 

vorticity. This can be disregarded when adopted the 

hypothesis of potential flow, which constitutes a 

good approximation to the geographical scale. It is 

important to observe that the small vortices, produced 

by locking and responsible for the high values of 

vorticity close to solid interfaces, do not significantly 

affect the dispersion of pollutant. This local effect of 

mixing can be introduced by employing models of 

turbulence to refine the local field of velocities. Thus, 

the equation (5.10) takes the following form: 




























2

2

2

2

...
y

a

x

a
D

y

a
v

x

a
u  (11). 

 

This means that it is possible to construct a symbolic 

iterative method in which is obtained a sequence of 

exact solutions for the advection-diffusion equation, 

following a recursive process defined by: 

y

C

x
Du

C
C

i

i 







 



1

1
..  (12) 

and 

 

x

C

y
Dv

C
C

i

i 







 



1

1
..  (13). 
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In other words, once the functions C(x,y) 

and a(x,y) are solutions of the same differential 

equation, each solution found can be replaced in the 

terms of the source 
x

a




   and 

y

a




  , which 

appear in the system formed by the equations(2) and 

(3). 

The great operational advantage of the proposed 

formulation lies in the following fact: in the first 

iteration, corresponding to i = 0, it is not necessary to 

know previously an exact solution for the advection-

diffusion equation; simply use the own trivial 

solution to start the process. 

This makes the formulation proposed more 

advantageous than the use of Lie symmetries in three 

fundamental aspects: 

i. dispenses the deduction and resolution of 

determinant equations, used to obtain the 

generator coefficients for the respective groups 

of symmetry [12]; 

ii. does not require the use of rules for the 

manipulation of exponentials of operators [13] 

in order to obtain the symmetries in explicit 

form, i.e., expressed in terms of changes in 

variables; and 

iii. does not require the previous knowledge of 

any exact solution for the target equation as 

already mentioned. 

Once (12) and (13) allow obtaining a 

sequence of exact solutions for the advection-

diffusion equation in Cartesian coordinates, the 

following question arises out: if the local relief of the 

soil is uneven, how to proceed to maintain the 

discretization in thick mesh? Is it not be necessary to 

refine the mesh together at the solid interface? The 

equations (12) and (13) can be easily adjusted to a 

generalized curvilinear orthogonal coordinate system, 

in which the new coordinates represent the current 

function (ψ) and the potential function velocity (ϕ) 

for the potential flow. 

By using the curvilinear coordinates 

adjusted to the geometry of the domain, it is possible 

to replace the spatial derivatives of concentration by 

the expressions: 
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(14) 
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u
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y

C

y

C
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(15). 

By redefining the partial derivatives of 

concentration in the equation (12) and (13), it is 

obtained: 



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
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








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


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C
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i
uvDv 11

1
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




 CC ii vu ..   (17). 

Although the formulation proposed has been 

designed to solve the advection-diffusion equation in 

the two-dimensional form at steady state, the 

achievement of three-dimensional and transient 

solutions with these expressions constitutes a 

relatively simple task. Indeed, there is extensive 

literature about symmetries permitted by the 

advection-diffusion equations. Symmetries are 

changes of variable that transform exact solutions of 

a differential equation into new solutions, also exact, 

from the same equation. These new solutions present 

larger number of arbitrary elements and dependency 

in relation to variables not considered in a previous 

analysis. Importantly, the use of symmetries had not 

yet been widely applied to engineering problems yet, 

precisely due to the need of previous knowledge of 

exact solutions, which are functions of at least two 

independent variables. The achievement of these 

solutions is the decisive step for the viability of the 

use of symmetries in the resolution of problems of 

this nature. 

 

III. CONCLUSION 
The formulation proposed can be extended 

to problems of nonlinear diffusion in which the 

coefficient D directly depends on the spatial variables 

and indirectly on the temperature and concentration. 

This generalization produces terms that represent the 

anomalous diffusion occurring in regions of high 

gradient and low laplacian of concentration, and has 

origin in the definition of the diffusivity coefficient in 

micro scale, through the master equation of the 

statistical thermodynamics [21], an integral form of 

the equation of transport. Approximations of the 

master equation obtained via integration by parts 

produce the Fick’s Law, and its extensions. 

Depending on the number of terms considered in this 

recursive definition, it can be produced terms related 

to isotropic and anisotropic diffusion. This occurs 

because the advection-diffusion equation, two-

dimensional and stationary, in its vector form can be 

expressed as follows: 

𝑉  . ∇C = ∇ 𝐷. ∇C = 𝐷. ∇2 + ∇C. ∇D (18). 
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In the equation above, the term∇C. ∇D 

corresponds to the anomalous diffusion, constituted 

by the scalar product for the concentration and the 

diffusion gradient. The diffusion gradient, in turn, as 

already mentioned directly depends on spatial 

variables and indirectly on temperature and 

concentration, as shown below. By using the chain 

rule to redefine the diffusivity gradient, it is obtained: 

 

∇𝐷 =
𝜕𝐷

𝜕𝑇
∇T +

𝜕𝐷

𝜕𝐶
. ∇C    (19). 

 

By replacing the equation (19) in the stationary two-

dimensional advection-diffusion equation: 

 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷

𝜕𝐷

𝜕𝑇
.  ∇T. ∇C −

𝜕𝐷

𝜕𝐶
 ∇C. ∇C + 𝐷∇2𝐶 

     (20) 

 

Although the resulting equation is nonlinear 

of second order, its factored form remains 

unchanged, so that the formulation proposed remains 

valid for the achievement of exact solutions. 

In the equation (19), the partial derivatives
𝜕𝐷

𝜕𝐶
and 

𝜕𝐷

𝜕𝑇
can be obtained through the definition of the 

diffusion coefficient in micro scale: 

𝐷 =
𝑙2

𝜏
     (21) 

where 1 is the mean free path of the gas molecules, 

and τ is the average period elapsed between two 

successive collisions. It is noticed that 1 essentially 

depends on the concentration, while the quotient  
𝑙

𝜏
 , 

which represents the mean free velocity of the gas 

molecules, is a function of temperature. Thus, it can 

be used models from the kinetic theory of gases in 

order to express the diffusion coefficient as function 

of temperature and pressure, or temperature and 

concentration. 
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